Polymorphism in abalone fertilization proteins is consistent with the neutral evolution of the egg's receptor for lysin (VERL) and positive darwinian selection of sperm lysin.

نویسندگان

  • W J Swanson
  • C F Aquadro
  • V D Vacquier
چکیده

The evolution of species-specific fertilization in free-spawning marine invertebrates is important for reproductive isolation and may contribute to speciation. The biochemistry and evolution of proteins mediating species-specific fertilization have been extensively studied in the abalone (genus Haliotis). The nonenzymatic sperm protein lysin creates a hole in the egg vitelline envelope by species-specifically binding to its egg receptor, VERL. The divergence of lysin is promoted by positive Darwinian selection. In contrast, the evolution of VERL does not depart from neutrality. Here, we cloned a novel nonrepetitive region of VERL and performed an intraspecific polymorphism survey for red (Haliotis rufescens) and pink (Haliotis corrugata) abalones to explore the evolutionary forces affecting VERL. Six statistical tests showed that the evolution of VERL did not depart from neutrality. Interestingly, there was a subdivision in the VERL sequences in the pink abalone and a lack of heterozygous individuals between groups, suggesting that the evolution of assortative mating may be in progress. These results are consistent with a model which posits that egg VERL is neutrally evolving, perhaps due to its repetitive structure, while sperm lysin is subjected to positive Darwinian selection to maintain efficient interaction of the two proteins during sperm competition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins.

Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope re...

متن کامل

Duplicate Abalone Egg Coat Proteins Bind Sperm Lysin Similarly, but Evolve Oppositely, Consistent with Molecular Mimicry at Fertilization

Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization ...

متن کامل

Coevolution of Interacting Fertilization Proteins

Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an a...

متن کامل

The Tegula tango: a coevolutionary dance of interacting, positively selected sperm and egg proteins.

Reproductive proteins commonly show signs of rapid divergence driven by positive selection. The mechanisms driving these changes have remained ambiguous in part because interacting male and female proteins have rarely been examined. We isolate an egg protein the vitelline envelope receptor for lysin (VERL) from Tegula, a genus of free-spawning marine snails. Like VERL from abalone, Tegula VERL ...

متن کامل

Positive selection is a general phenomenon in the evolution of abalone sperm lysin.

Lysin is a 16kDa acrosomal protein used by abalone sperm to create a hole in the egg vitelline envelope (VE). The interaction of lysin with the VE is species-selective and is one step in the multistep fertilization process that restricts heterospecific (cross-species) fertilization. For this reason, the evolution of lysin could play a role in establishing prezygotic reproductive isolation betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2001